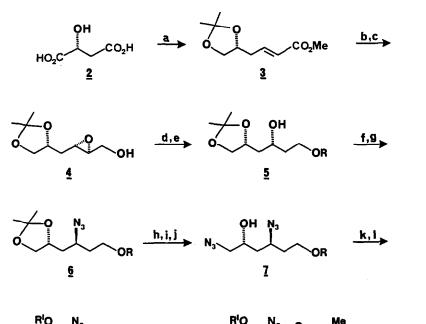
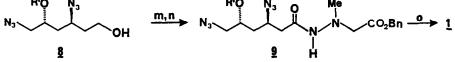

ENANTIOSELECTIVE TOTAL SYNTHESIS OF (+)-NEGAMYCIN


David Tanner^{*} and Peter Somfai^{*} Department of Organic Chemistry Chalmers University of Technology S-412 96 Göteborg, Sweden


<u>Summary</u>. An efficient enantioselective total synthesis of the antibiotic (+)-negamycin is described, the absolute stereochemistry deriving from (\underline{R}) -(+)-malic acid and subsequent use of the Sharpless asymmetric epoxidation reaction.

Negamycin $(2-[(3\underline{R},5\underline{R})-3,6-diamino-5-hydroxyhexanoy]-1-methylhydrazinoacetic acid) <u>1</u>$ is an unusual hydrazide antibiotic, isolated^{1a} from <u>Streptomyces purpeofuscus</u>, whichdisplays strong inhibitory activity against Gram-negative bacteria. Following thestructural determination^{1b} a good deal of synthetic work has been devoted to thisinteresting target molecule, and several syntheses of the antibiotic in both racemic^{2a-c}and optically active^{3a-c} form have been reported as well as a route to the 3-aza-analogue⁴.The present paper describes an efficient, highly stereocontrolled and relatively briefenantioselective total synthesis of the title antibiotic (see Scheme <u>1</u>).

Standard chemistry^{5,6,7} was used to convert commercially available (<u>R</u>)-(+)-malic acid (<u>2</u>, Aldrich) to the <u>trans</u>- α , β -unsaturated ester <u>3</u> ([α]_D +11.63^o, <u>c</u> = 1.07, CH₂Cl₂). After DIBAL reduction the resultant allylic alcohol was subjected to the catalytic version⁸ of the Sharpless asymmetric epoxidation reaction to yield <u>4</u> ([α]_D -34.0^o, <u>c</u> = 1.00, CH₂Cl₂) as a single diastereomer within the limits of high-field NMR-spectroscopic detection. Regioselective (C-2) ring-opening of this epoxy alcohol by means of Red-Al in THF⁹ led to the relevant 1,3-diol, the primary hydroxyl of which was protected selectively¹⁰ as the ^tbutyldiphenylsilyl ether (<u>5</u>, [α]_D -3.00^o, <u>c</u> = 2.80, CH₂Cl₂). The free secondary hydroxyl was then mesylated and the leaving group displaced smoothly in S_N2 fashion by sodium azide, furnishing <u>6</u> ([α]_D +12.6^o, <u>c</u> = 1.00, CH₂Cl₂). The acetonide moiety of <u>6</u> was

$$R = Si^{t}BuPh_{2}, R^{1} = CH_{2}OCH_{2}Ph$$

SCHEME <u>1</u>. (a) See refs. 5,6,7. (b) DIBAL, CH_2Cl_2 , -78°C, 96% yield. (c) (+)-DET, Ti(0ⁱPr₄), TBHP, CH_2Cl_2 , -20°C, 92%. (d) Red-A1, THF, -40°C to RT, 98%. (e) ^tBuPh_2SiCl, DMAP, NEt_3, CH_2Cl_2 , RT, 89%. (f) MsCl, THF, 0°C, 100%. (g) NaN₃, 15-crown-5 (cat.), DMF, 50°C, 99%. (h) CuCl₂. 2H₂O, EtOH, RT, 87%. (i) pTsCl, pyridine, -20°C, 92%. (j) as for (g), 91%. (k) BOMCl, ⁱPr₂NEt, CH_2Cl_2 , RT, 93%. (1) ⁿBu₄NF, THF, 94%. (m) RuCl₃ (cat.), NaIO₄, $CH_3CN/CCl_4/H_2O$, RT, 67%. (n) ClCO₂Et, NEt₃, toluene, -5°C, then benzyl(1-methylhydrazino)-acetate, 63%. (o) H₂, Pd-C, MeOH/AcOH.aq, 89%.

dismantled via the mild and efficacious method of Iwata and Ohrui¹¹ and after selective tosylation of the resultant 1,2-diol at the primary site use of sodium azide in DMF yielded the bis-azide $\underline{7}$ (IR: 2150 cm⁻¹ (vs), $[\alpha]_{D}$ +8.83°, $\underline{c} = 0.60$, CH₂Cl₂). The remaining secondary alcohol function was then protected as the benzyloxymethyl (BOM) ether and the silyl ether cleaved by fluoride anion in THF¹². Primary alcohol <u>8</u> ($[\alpha]_D$ +27.5^o, <u>c</u> = 2.85 CH₂Cl₂) was then oxidised¹³ carefully (with some not unexpected interference from the BOM protecting group) to the corresponding acid (structure not shown, IR: 1715 cm⁻¹ (s), $[\alpha]_{D}$ +30.1°, <u>c</u> = 0.45, CH₂Cl₂) which was coupled using the mixed anhydride method¹⁴ with the known⁴ benzyl(1-methylhydrazinoacetate to yield hydrazide <u>9</u>. This material displayed a temperature-dependent ¹H NMR spectrum (270 MHz, $C_2CI_4D_2$ solution, +30^o to +120°C, all spectral changes being reversible) consistent with the presence of amide-type rotamers. The key coupling reaction proceeded smoothly in 63% isolated yield and compound 9 could subsequently be transformed in a one-pot hydrogenolysis reaction (entailing removal of both the protecting groups and reduction of both the azide moieties) to the desired (+)-negamycin in 89% isolated yield after purification^{2b}. The spectral and physical data of our synthetic material were in excellent accord with the literature values¹⁵, the 270 MHz ¹H NMR spectrum being identical to that kindly provided by Professor Chihiro Kibayashi. The antibiotic was thus synthesised in its natural form in 14 steps and 18% overall yield from the readily available 3, and we have used the present methodology to prepare a 2.5-gram quantity of the key (bis-azido)alcohol 8¹⁶.

In conclusion, we would like to point out that the present route is potentially very flexible in that by suitable combinations of a given enantiomer of the malic acid starting material with the appropriate enantiomer of the tartrate auxiliary used in the asymmetric epoxidation step, both enantiomers of negamycin should be equally easily available as well as the epinegamycins^{2C, 3C}.

<u>Acknowledgements</u>. We thank the <u>Swedish Natural Science Research Council</u> for financial support (to D.T.). We are also indebted to Prof. Chihiro Kibayashi, Tokyo College of Pharmacy, for copies of the high-field ¹H NMR spectrum of authentic negamycin and to Prof. Gösta Brunow, University of Helsinki, for drawing our attention to the hydrolysis procedure described in ref. 11.

REFERENCES and NOTES

 (a)Hamada,M., Takeuchi,T., Kondo,S., Ikeda,H., Naganawa,H., Maeda,K., Okami,Y., Umezawa,H. <u>J.Antibiot</u>. (1970) <u>23</u> 170.
(b)Kondo,S., Shibahara,S., Takahashi,S., Maeda,K., Umezawa,H., Ohno,M. <u>J.Am.Chem.Soc</u>. (1971) <u>93</u> 6305.